Some quantitative one-sided weighted estimates
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Share
Center
Department/Institute
Keywords
Abstract
We show a link between affine differential geometry and null submanifolds in a semi-Riemannian manifold via statistical structures. Once a rigging for a null submanifold is fixed, we can construct a semi-Riemannian metric on it. This metric and the induced connection constitute a statistical structure on the null submanifold in some cases. We study the statistical structures arising in this way. We also construct statistical structures on a null hypersurface in the Lorentz–Minkowski space using the null second fundamental form. This extends the classical construction to the null case.
Description
Bibliographic citation
Meli, C. B., Ngakeu, F., & Olea, B. (2023). Statistical structures arising in null submanifolds. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 117(1), 48.
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










