The hyperdeterminant vanishes on all but two Schur functors
Loading...
Identifiers
Publication date
Reading date
Authors
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Share
Center
Department/Institute
Keywords
Abstract
We recall the notion of hyperdeterminant of a multidimensional matrix (tensor). We prove that if we restrict the hyperdeterminant to a skew-symmetric tensor p V ⊆ V ⊗p with
p ≥ 3 then it vanishes. The hyperdeterminant also vanishes
when we restrict it to the space Γλ ⊗ SλV ⊂ V ⊗p where λ is
a Young diagram with p boxes and λ2 ≥ 2 or λ3 ≥ 1.
Description
Bibliographic citation
A. Tocino, The hyperdeterminant vanishes on all but two Schur functors, Journal of Algebra, Volume 450, 2016, Pages 316-322, ISSN 0021-8693, https://doi.org/10.1016/j.jalgebra.2015.11.018.











