JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Data-driven distributionally robust optimization with Wasserstein metric, moment conditions and robust constraints

    • Autor
      Esteban-Pérez, Adrián; Morales-González, Juan MiguelAutoridad Universidad de Málaga
    • Fecha
      2018-07-12
    • Palabras clave
      Matemáticas aplicadas - Congresos
    • Resumen
      We consider optimization problems where the information on the uncertain parameters reduces to a finite data sample. Using the Wasserstein metric, a ball in the space of probability distributions centered at the empirical distribution is constructed. The goal is to solve a minimization problem subject to the worst-case distribution within this Wasserstein ball. Moreover, we consider moment constraints in order to add a priori information about the random phenomena. In addition, we not only consider moment constraints but also take into account robust classical constraints. These constraints serve to hedge decisions against realizations of random variables for which we do not have distributional information other than their support set. With these assumptions we need to solve a data-driven distributionally robust optimization problem with several types of constraints. We show that strong duality holds under mild assumptions, and the distributionally robust optimization problems overWasserstein balls with moment constraints and robust classical constraints can in fact be reformulated as tractable finite programs. Finally, a taxonomy of the tractable finite programs is shown under di erent assumptions about the objective function, the constraints and the support set of the random variables.
    • URI
      https://hdl.handle.net/10630/16206
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    euro2018_DRO_Esteban&Morales.pdf (1.180Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA