This paper presents the system architecture and design of two planetary rover laboratory prototypes developed at the European Space Agency (ESA). These research platforms have been developed to provide early prototypes for validation of designs and serve ESA’s Automation & Robotics Lab infrastructure as testbeds for continuous research and testing. Both rovers have been built considering the constraints of Space Systems with the sufficient level of representativeness to allow rapid prototyping. They avoid strictly space-qualified components and designs that present a major cost burden and frequently lack the flexibility or modularity that the lab environment requires for its investigations. This design approach is followed for all the mechanical, electrical, and software aspects of the system. In this paper, two ExoMars mission-representative rovers, the ExoMars Testing Rover (ExoTeR) and the Martian Rover Testbed for Autonomy (MaRTA), are thoroughly described. The lessons learnt and experience gained while running several research activities and test campaigns are also presented. Finally, the paper aims to
provide some insight on how to reduce the gap between lab R&D and flight implementation by anticipating system constraints
when building and testing these platforms.